

HPC Challenge Benchmarks and the TOP500

Jack Dongarra (UTK/ORNL)

At The Time The Linpack Benchmark Was Created ...

- If we think about computing in late 70's
- Perhaps the LINPACK benchmark was a reasonable thing to use.
- Memory wall, not so much a wall but a step.
- In the 70's, things were more in balance
 - > The memory kept pace with the CPU

n cycles to execute an instruction, n cycles to bring in a word from memory memory

- Showed compiler optimization
- Today provides a historical base of data

 Many changes in our hardware over the past 30 years
 Top500 Systems/Architectures

400

300

200

- Superscalar, Vector, Distributed Memory, Shared Memory, Multicore, ...
- While there has been some changes to the Linpack Benchmark not all of them reflect the hardware.
- Today's memory hierarchy is much more complicated.

Const.

Cluster

■ MPP

□ SMP

□ Single Proc.

Motivation for Additional Benchmarks

Linpack Benchmark

- Good
 - One number
 - > Simple to define & easy to rank
 - Allows problem size to change with machine and over time
 - Stresses the system with a long running job
- Bad
 - Emphasizes only "peak" CPU speed and number of CPUs
 - Does not stress local bandwidth
 - Does not stress the network
 - Does not test gather/scatter
 - Ignores Amdahl's Law (Only does weak scaling)
- Ugly
 - Benchmarketeering hype

- Perhaps there was a time when this was adequate.
- From Linpack Benchmark and Top500: "no single number can reflect overall performance"
- Clearly need something more than Linpack
- HPC Challenge Benchmark
 - Test suite stresses not only the processors, but the memory system and the interconnect.
 - The real utility of the HPCC benchmarks are that architectures can be described with a wider range of metrics than just Flop/s from Linpack.

Goals HPC Challenge Benchmark

- Stress CPU, memory system, interconnect
- To complement the Top500 list
- To provide benchmarks that bound the performance of many real applications as a function of memory access characteristics
 > e.g., spatial and temporal locality
- Allow for optimizations
 - Record effort needed for tuning
 - Base run requires MPI and BLAS
- Provide verification of results
- Archive results

Tests on Single Processor and System

- Local only a single processor is performing computations.
- Embarrassingly Parallel each processor in the entire system is performing computations but they do no communicate with each other explicitly.
- Global all processors in the system are performing computations and they explicitly communicate with each other.

Consists of basically 7 benchmarks;

- Think of it as a framework or harness for adding benchmarks of interest.
- 1. HPL (LINPACK) MPI Global (Ax = b)
- 2. STREAM Local; single CPU *STREAM — Embarrassingly parallel
- 3. PTRANS (A←A + B^T) MPI Global
- 4. RandomAccess Local; single CPU
 *RandomAccess Embarrassingly parallel RandomAccess — MPI Global
- 5. BW and Latency MPI
- 6. FFT Global, single CPU, and EP
- 7. Matrix Multiply single CPU and EP

name	kernel	bytes/iter	FLOPS/iter
COPY:	a(i) = b(i)	16	0
SCALE :	a(i) = q*b(i)	16	1
SUM:	a(i) = b(i) + c(i)	24	1
TRIAD:	a(i) = b(i) + q*c(i)	24	2

Random integer read; update; & write

- . HPCC was developed by HPCS to assist in testing new HEC systems
- . Each benchmark focuses on a different part of the memory hierarchy
- . HPCS performance targets attempt to Flatten the memory hierarchy Improve real application performance Make programming easier

- . HPCC was developed by HPCS to assist in testing new HEC systems
- . Each benchmark focuses on a different part of the memory hierarchy
- . HPCS performance targets attempt to Flatten the memory hierarchy Improve real application performance Make programming easier

- . HPCC was developed by HPCS to assist in testing new HEC systems
- . Each benchmark focuses on a different part of the memory hierarchy
- . HPCS performance targets attempt to Flatten the memory hierarchy Improve real application performance Make programming easier

- . HPCC was developed by HPCS to assist in testing new HEC systems
- . Each benchmark focuses on a different part of the memory hierarchy
- . HPCS performance targets attempt to Flatten the memory hierarchy Improve real application performance Make programming easier

Computational Resources and

HPC Challenge Benchmarks

Computational Resources and

HPC Challenge Benchmarks

• How Does The Benchmarking Work?

- Single program to download and run
 Simple input file similar to HPL input
- Base Run and Optimization Run
 - > Base run must be made
 - > User supplies MPI and the BLAS
 - Optimized run allowed to replace certain routines
 User specifies what was done
- Results upload via website
- html table and Excel spreadsheet generated with performance results
 - > Intentionally we are not providing a single figure of merit (no over all ranking)
- Goal: no more than 2 X the time to execute HPL.

http://icl.cs.utk.edu/hpcc/ web

Ç

ICL UT

	HPC CHALLENGE #Person
Home Rules	HPC Challenge Benchmark
News Download	The HPC Challenge benchmark consists of basically 7 benchmarks:
FAQ Links	 <u>HPL</u> - the Linpack TPP benchmark which measures the floating point rate of execution for solving a linear system of equations.
Collaborators Sponsors	 DGEMM - measures the floating point rate of execution of double precision real matrix-matrix multiplication.
Upload Kiviat Diagram	 <u>STREAM</u> - a simple synthetic benchmark program that measures sustainable memory bandwidth (in GB/s) and the corresponding computation rate for simple vector kernel.
Results	 PTRANS (parallel matrix transpose) - exercises the communications where pairs of processors communicate with each other simultaneously. It is a useful test of the total communications capacity of the network.
	5. <u>RandomAccess</u> - measures the rate of integer random updates of memory (GUPS).
	 <u>FFTE</u> - measures the floating point rate of execution of double precision complex one-dimensional Discrete Fourier Transform (DFT).
	 Communication bandwidth and latency - a set of tests to measure latency and bandwidth of a number of simultaneous communication patterns; based on <u>b eff</u> (effective bandwidth benchmark).

Conc	lensed Res	ults - Ba	ase Runs	Only - 114 S	ystems - Ge	nerated on	Tue Nov 14	17:13:55 20	06			
System Information System - Processor - Speed - Count - Thre	ads - Proce	sses		G-HPL	G-PTRANS	G-Random Access	G-FFTE	EP-STREAM Sys	EP-STREAM Triad	EP-DGEMM	RandomRing Bandwidth	RandomRin Latency
MA/PT/PS/PC/TH/PR/CM/CS/IC	/IA/SD			TFlop/s	GB/s	Gup/s	GFlop/s	GB/s	GB/s	GFlop/s	GB/s	usec
Cray Inc. Red Storm/XT3 AMD Opteron	2.4GHz	12960	125920	91.0350000	2356.9700	1.7401500	1554.0700	54840.499	2.1158	4.39939	0.05911	16.2
IBM Blue Gene/L PowerPC 440	0.7GHz	65536	165536	80.6830000	339.2840	0.0657312	2178.1100	53555.888	0.8172	1.85619	0.01084	8.8
IBM p5-575 Power5	1.9GHz	10240	110240	57.8670000	553.0090	0.1693440	842.5000	55184.179	5.3891	7.08562	0.11015	118.5
IBM p5-575 Power5	1.9GHz	8192	18192	45.7019000	2626.1700	0.3239760	908.6920	44455.936	5.4268	7.06423	0.08871	11.0
Cray Inc. XT3 Dual-Core AMD Opteron	2.6GHz	10404	110404	43.4033000	778.3850	0.8235630	1107.2100	25774.557	2.4774	4.78995	0.06937	14.3
IBM Blue Gene/L PowerPC 440	0.7GHz	65536	165536	37.3540000	4665.9100	0.1648600	1762.8200	62889.787	0.9596	2.47017	0.01039	8.6
IBM p5-575 Power5	1.9GHz	8192	28192	33.3175000	575.8230	0.2066390	966.6680	43802.460	5.3470	6.08616	0.07698	51.9
Cray Inc. XT3 AMD Opteron	2GHz	10350	110350	32.9865000	1813.0600	1.0176500	1118.2900	43581.780	4.2108	3.66719	0.16188	10.3
IBM Blue Gene/L PowerPC 440	0.7GHz	32768	132768	31.2581000	87.7818	0.2780090	1112.8100	29913.678	0.9129	2.17447	0.01197	9.5
Cray Inc. XT3 AMD Opteron	2.4GHz	5200	1 5200	20.5270000	874.8990	0.2685830	644.7300	26020.800	5.0040	4.39535	0.14682	25.8
Cray Inc. XT3 AMD Opteron	2.4GHz	5208	1 5208	20.4086000	944.2270	0.6724120	761.7290	24268.447	4.6598	4.41173	0.20636	9.2
Cray Inc. XT3 AMD Opteron	2.6GHz	4096	1 4096	16.9752000	302.9790	0.5330720	905.5690	20656.456	5.0431	4.78166	0.16896	9.4
Cray Inc. XT3 AMD Opteron	2.6GHz	4128	1 4128	16.6421000	674.7860	0.6767580	821.6770	19295.676	4.6743	4.75946	0.22245	8.2
Cray Inc. XT3 AMD Opteron	2.4GHz	3744	1 3744	14.7040000	608.5060	0.2202960	417.1720	18146.382	4.8468	4.41330	0.16164	25.3
Cray Inc. X1 Cray E	1.13GHz	1008	1 1008	12.0263000	108.0190	0.0861199	82.3884	15522.091	15.3989	14.50000	0.15667	16.3
HP XC Intel Itanium 2	1.6GHz	2048	1 2048	10.5616000	306.4190	0.2633320	339.8360	4000.031	1.9531	6.26484	0.15920	6.0
System Information System - Processor - Speed - Count - Threads - Processes				G-HPL	G-PTRANS	G-Random Access	G-FFTE	EP-STREAM Sys	EP-STREAM Triad	EP-DGEMM	RandomRing Bandwidth	RandomRing Latency
MA/PT/PS/PC/TH/PR/CM/CS/IC	/IA/SD			TFlop/s	GB/s	Gup/s	GFlop/s	GB/s	GB/s	GFlop/s	GB/s	usec
SGI Columbia 2048 Intel Itanium 2	1.6GHz	2024	1 2024	9.3196500	18.1901	0.0491621	45.7760	3998.493	1.9755	6.23637	0.12271	6.9
NEC SX-8	2GHz	576	1 576	8.0085800	312.7070	0.0193617	160.9480	23555.750	40.8954	15.22320	0.82924	22.2
IBM p655 Power4+	1.5GHz	2048	1 2048	6.2094300	103.8040	0.1417230	156.5440	3631.636	1.7733	3.99073	0.06960	13.3
SGI Altix 3700 Bx2 Intel Itanium 2	1.6GHz	1008	1 1008	5.1383200	105.6660	0.0325982	15.6619	1907.509	1.8924	5.88404	0.20288	6.8
HP XC Intel Itanium 2	1.6GHz	1024	1 1024	4.8532700	154.1290	0.1615660	184.1270	2002.422	1.9555	6.24250	0.15978	5.9
Cray Inc. XT3 AMD Opteron	2.6GHz	1100	11100	4.7823400	217.9230	0.1370020	266.6600	5274.698	4.7952	4.81050	0.28638	25.9
Cray Inc. XT3 AMD Opteron	2.6GHz	1100	11100	4.7276600	253.3460	0.3035680	328.2860	5161.134	4.6919	4.77440	0.39964	7.2
IBM P5 P575+ Power5+	1.9GHz	512	1 512	3.4100800	219.5560	0.0848539	52.2538	2997.745	5.8550	7.62342	0.05243	36.1
Cray Inc. X1E Cray X1 MSP	1.13GHz	252	1 252	3.1940900	85.2040	0.0148684	15.5352	2439.985	9.6825	_ 14.18470	0.36024	14.9
IBM p655 Power4+	1.5GHz	1024	1 1024	3.1102600	51.4248	0.0983533	82.1055	1733.284	1.6927	3.72701	0.09024	10.1

- Constructing a framework for benchmarks
- Developing machine signatures
- Plans are to expand the benchmark collection
 - Sparse matrix operations
- Port to new systems
- Provide more implementations
 - Languages (Fortran, UPC, Co-Array)
 - Environments
 - Paradigms

Collaborators

- HPC Challenge
 - Piotr Łuszczek, U of Tennessee
 - David Bailey, NERSC/LBL
 - Jeremy Kepner, MIT Lincoln Lab
 - Bob Lucas, ISI/USC
 - Rusty Lusk, ANL
 - > John McCalpin, IBM, Austin
 - > Rolf Rabenseifner, HLRS Stuttgart
 - > Daisuke Takahashi, Tsukuba, Japan
 - Jeff Vetter, ORNL

Wel	b <u>Images</u>	Groups	<u>News</u>	Froogle	more »	
dongarra	1					Advanced Search Preferences
	Google Se	arch	l'm Fe	eeling Luck	Language Tools	

Ways to help with tsunami relief

Advertising Programs - About Google - Go to Google.com

Make Google Your Homepage!

©2005 Google - Searching 8,058,044,651 web pages

http://icl.cs.utk.edu/hpcc/

Office of Science