
1

Chapter 2
Assemblers
http://www.intel.com/multi-core/demos.htm

Source
Program Assembler

Object
Code

Loader

Executable
Code

Linker

http://www.intel.com/multi-core/demos.htm

2

Outline

2.1 Basic Assembler Functions
A simple SIC assembler

Assembler tables and logic

2.2 Machine-Dependent Assembler Features
Instruction formats and addressing modes

Program relocation

2.3 Machine-Independent Assembler Features

2.4 Assembler Design Options
Two-pass

One-pass

Multi-pass

3

2.1 Basic Assembler Functions

Figure 2.1 shows an assembler language program
for SIC.

The line numbers are for reference only.

Indexing addressing is indicated by adding the modifier
“,X”

Lines beginning with “.” contain comments only.

Reads records from input device (code F1)

Copies them to output device (code 05)

At the end of the file, writes EOF on the output device,
then RSUB to the operating system

4

5

6

7

2.1 Basic Assembler Functions

Assembler directives (pseudo-instructions)
START, END, BYTE, WORD, RESB, RESW.

These statements are not translated into machine
instructions.

Instead, they provide instructions to the assembler
itself.

8

2.1 Basic Assembler Functions

Data transfer (RD, WD)
A buffer is used to store record

Buffering is necessary for different I/O rates

The end of each record is marked with a null character
(0016)

Buffer length is 4096 Bytes

The end of the file is indicated by a zero-length record

When the end of file is detected, the program writes
EOF on the output device and terminates by RSUB.

Subroutines (JSUB, RSUB)
RDREC, WRREC

Save link (L) register first before nested jump

9

2.1.1 A simple SIC Assembler

Figure 2.2 shows the generated object code for
each statement.

Loc gives the machine address in Hex.

Assume the program starting at address 1000.

Translation functions
Translate STL to 14.

Translate RETADR to 1033.

Build the machine instructions in the proper format (,X).

Translate EOF to 454F46.

Write the object program and assembly listing.

10

11

12

13

2.1.1 A simple SIC Assembler

A forward reference
10 1000 FIRST STL RETADR 141033

A reference to a label (RETADR) that is defined later in
the program

Most assemblers make two passes over the source
program

Most assemblers make two passes over source
program.

Pass 1 scans the source for label definitions and
assigns address (Loc).

Pass 2 performs most of the actual translation.

14

2.1.1 A simple SIC Assembler

Example of Instruction Assemble
Forward reference

STCH BUFFER, X

(54)16 1 (001)2 (039)16

8 1 15
opcode x address

m

549039

15

2.1.1 A simple SIC Assembler

Forward reference
Reference to a label that is defined later in the program.

Loc Label OP Code Operand

1000 FIRST STL RETADR

1003 CLOOP JSUB RDREC
… … … …

1012 J CLOOP
… … … …
1033 RETADR RESW 1

16

2.1.1 A simple SIC Assembler

The object program (OP) will be loaded into
memory for execution.

Three types of records
Header: program name, starting address, length.

Text: starting address, length, object code.

End: address of first executable instruction.

17

2.1.1 A simple SIC Assembler

18

2.1.1 A simple SIC Assembler

The symbol ^ is used to separate fields.
Figure 2.3

1E(H)=30(D)=16(D)+14(D)

19

2.1.1 A simple SIC Assembler

Assembler’s Functions
Convert mnemonic operation codes to their machine
language equivalents

STL to 14

Convert symbolic operands (referred label) to their
equivalent machine addresses

RETADR to 1033

Build the machine instructions in the proper format

Convert the data constants to internal machine
representations

Write the object program and the assembly listing

20

2.1.1 A simple SIC Assembler
The functions of the two passes assembler.

Pass 1 (define symbol)
Assign addresses to all statements (generate LOC).

Check the correctness of Instruction (check with OP table).

Save the values (address) assigned to all labels into
SYMBOL table for Pass 2.

Perform some processing of assembler directives.

Pass 2
Assemble instructions (op code from OP table, address
from SYMBOL table).

Generate data values defined by BYTE, WORD.

Perform processing of assembler directives not done
during Pass 1.

Write the OP (Fig. 2.3) and the assembly listing (Fig. 2.2).

21

2.1.2 Assembler Tables and Logic

Our simple assembler uses two internal tables: The
OPTAB and SYMTAB.

OPTAB is used to look up mnemonic operation codes and
translate them to their machine language equivalents.

LDA→00, STL→14, …

SYMTAB is used to store values (addresses) assigned to
labels.

COPY→1000, FIRST→1000 …

Location Counter LOCCTR
LOCCTR is a variable for assignment addresses.

LOCCTR is initialized to address specified in START.

When reach a label, the current value of LOCCTR gives the
address to be associated with that label.

22

2.1.2 Assembler Tables and Logic

The Operation Code Table (OPTAB)
Contain the mnemonic operation & its machine
language equivalents (at least).

Contain instruction format & length.

Pass 1, OPTAB is used to look up and validate
operation codes.

Pass 2, OPTAB is used to translate the operation codes
to machine language.

In SIC/XE, assembler search OPTAB in Pass 1 to find
the instruction length for incrementing LOCCTR.

Organize as a hash table (static table).

23

2.1.2 Assembler Tables and Logic

The Symbol Table (SYMTAB)
Include the name and value (address) for
each label.
Include flags to indicate error conditions
Contain type, length.
Pass 1, labels are entered into SYMTAB,
along with assigned addresses (from
LOCCTR).
Pass 2, symbols used as operands are look
up in SYMTAB to obtain the addresses.
Organize as a hash table (static table).
The entries are rarely deleted from table.

COPY 1000
FIRST 1000
CLOOP 1003
ENDFIL 1015
EOF 1024
THREE 102D
ZERO 1030
RETADR 1033
LENGTH 1036
BUFFER 1039
RDREC 2039

24

2.1.2 Assembler Tables and Logic

Pass 1 usually writes an intermediate file.
Contain source statement together with its assigned
address, error indicators.

This file is used as input to Pass 2.

Figure 2.4 shows the two passes of assembler.
Format with fields LABEL, OPCODE, and OPERAND.

Denote numeric value with the prefix #.

#[OPERAND]

25

Pass 1

26

27

Pass 2

28

else
if (found symbol==RSUB||

found symbol== …||
found symbol==…)
store 0 as operand address

else
store 0 as operand address
set error flag

assemble the object code inst.

29

2.2 Machine-Dependent Assembler Features

Indirect addressing
Adding the prefix @ to operand (line 70).

Immediate operands
Adding the prefix # to operand (lines 12, 25, 55, 133).

Base relative addressing
Assembler directive BASE (lines 12 and 13).

Extended format
Adding the prefix + to OP code (lines 15, 35, 65).

The use of register-register instructions.
Faster and don’t require another memory reference.

30

Figure 2.5: First

31

Figure 2.5: RDREC

32

Figure 2.5: WRREC

33

2.2 Machine-Dependent Assembler
Features

SIC/XE
PC-relative/Base-relative addressing op m

Indirect addressing op @m

Immediate addressing op #c

Extended format +op m

Index addressing op m, X

register-to-register instructions COMPR

larger memory → multi-programming (program
allocation)

34

2.2 Machine-Dependent Assembler
Features

Register translation
register name (A, X, L, B, S, T, F, PC, SW) and their values
(0, 1, 2, 3, 4, 5, 6, 8, 9)

preloaded in SYMTAB

Address translation
Most register-memory instructions use program counter
relative or base relative addressing

Format 3: 12-bit disp (address) field
PC-relative: -2048~2047

Base-relative: 0~4095

Format 4: 20-bit address field (absolute addressing)

35

2.2.1 Instruction Formats & Addressing Modes

The START statement
Specifies a beginning address of 0.

Register-register instructions
CLEAR & TIXR, COMPR

Register-memory instructions are using
Program-counter (PC) relative addressing

The program counter is advanced after each instruction
is fetched and before it is executed.

PC will contain the address of the next instruction.
10 0000 FIRST STL RETADR 17202D

TA - (PC) = disp = 30H – 3H= 2D

36

37

38

39

+OP, e=1 Extended
n=1, i=1, OPcode+3, Simple
@m, n=1, i=0, OPcode+2, Indirect
#C, n=0, i=1, OPcode+1, Immediate
xbpe 2: PC-relative

4: base-relative
8: index (m,X)
1: extended

40

2.2.1 Instruction Formats & Addressing
Modes

40 0017 J CLOOP 3F2FEC

0006 - 001A = disp = -14

Base (B), LDB #LENGTH, BASE LENGTH
160 104E STCH BUFFER, X 57C003

TA-(B) = 0036 - (B) = disp = 0036-0033 = 0003

Extended instruction
15 0006 CLOOP +JSUB RDREC 4B101036

Immediate instruction
55 0020 LDA #3 010003
133 103C +LDT #4096 75101000

PC relative + indirect addressing (line 70)

41

2.2.2 Program Relocation

Absolute program, relocatable program

42

2.2.2 Program Relocation

43

2.2.2 Program Relocation

Modification record (direct addressing)
1 M

2-7 Starting location of the address field to be modified,
relative to the beginning of the program.

8-9 Length of the address field to be modified, in half
bytes.
M^000007^05

44

2.3 Machine-Independent Assembler
Features

Write the value of a constant operand as a part of
the instruction that uses it (Fig. 2.9).

A literal is identified with the prefix =
45 001A ENDFIL LDA =C’EOF’ 032010

Specifies a 3-byte operand whose value is the character
string EOF.

215 1062 WLOOP TD =X’05’ E32011

Specifies a 1-byte literal with the hexadecimal value 05

45

46

RDREC

47

WRREC

48

2.3.1 Literals
The difference between literal operands and
immediate operands

=, #

Immediate addressing, the operand value is assembled as
part of the machine instruction, no memory reference.

With a literal, the assembler generates the specified value
as a constant at some other memory location. The address
of this generated constant is used as the TA for the
machine instruction, using PC-relative or base-relative
addressing with memory reference.

Literal pools
At the end of the program (Fig. 2.10).

Assembler directive LTORG, it creates a literal pool that
contains all of the literal operands used since the previous
LTORG.

49

50

RDREC

51

WRREC

52

2.3.1 Literals

When to use LTORG (page 69, 4th paragraph)
The literal operand would be placed too far away from
the instruction referencing.

Cannot use PC-relative addressing or Base-relative
addressing to generate Object Program.

Most assemblers recognize duplicate literals.
By comparison of the character strings defining them.

=C’EOF’ and =X’454F46’

53

2.3.1 Literals

Allow literals that refer to the current value of the
location counter.

Such literals are sometimes useful for loading base
registers.
LDB =*

; register B=beginning address of statement=current LOC
BASE *

; for base relative addressing

If a literal =* appeared on line 13 or 55
Specify an operand with value 0003 (Loc) or 0020 (Loc).

54

2.3.1 Literals

Literal table (LITTAB)
Contains the literal name (=C’EOF’), the operand value
(454F46) and length (3), and the address (002D).

Organized as a hash table.

Pass 1, the assembler creates or searches LITTAB for
the specified literal name.

Pass 1 encounters a LTORG statement or the end of the
program, the assembler makes a scan of the literal
table.

Pass 2, the operand address for use in generating OC is
obtained by searching LITTAB.

55

2.3.2 Symbol-Defining Statements

Allow the programmer to define symbols and
specify their values.

Assembler directive EQU.

Improved readability in place of numeric values.
+LDT #4096

MAXLEN EQU BUFEND-BUFFER (4096)
+LDT #MAXLEN

Use EQU in defining mnemonic names for registers.
Registers A, X, L can be used by numbers 0, 1, 2.

RMO 0, 1
RMO A, X

56

2.3.2 Symbol-Defining Statements

The standard names reflect the usage of the
registers.
BASE EQU R1
COUNT EQU R2
INDEX EQU R3

Assembler directive ORG
Use to indirectly assign values to symbols.

ORG value

The assembler resets its LOCCTR to the specified value.

ORG can be useful in label definition.

57

2.3.2 Symbol-Defining Statements

The location counter is used to control assignment
of storage in the object program

In most cases, altering its value would result in an
incorrect assembly.

ORG is used
http://home.educities.edu.tw/wanker742126/index.html

SYMBOL is 6-byte, VALUE is 3-byte, and FLAGS is 2-byte.

http://home.educities.edu.tw/wanker742126/index.html

58

2.3.2 Symbol-Defining Statements

STAB SYMBOL VALUE FLAGS

(100 entries) 6 3 2

LOC
1000 STAB RESB 1100

1000 SYMBOL EQU STAB +0
1006 VALUE EQU STAB +6
1009 FLAGS EQU STAB +9

Use LDA VALUE, X to fetch the VALUE field form the
table entry indicated by the contents of register X.

59

2.3.2 Symbol-Defining Statements

STAB SYMBOL VALUE FLAGS

(100 entries) 6 3 2
1000 STAB RESB 1100

ORG STAB
1000 SYMBOL RESB 6
1006 VALUE RESW 1
1009 FLAGS RESB 2

ORG STAB+1100

60

2.3.2 Symbol-Defining Statements

All terms used to specify the value of the new
symbol --- must have been defined previously in
the program.
...
BETA EQU ALPHA
ALPHA RESW 1
...

Need 2 passes

61

2.3.2 Symbol-Defining Statements

All symbols used to specify new location counter
value must have been previously defined.
ORG ALPHA
BYTE1 RESB 1
BYTE2 RESB 1
BYTE3 RESB 1

ORG
ALPHA RESW 1

Forward reference
ALPHA EQU BETA
BETA EQU DELTA
DELTA RESW 1

Need 3 passes

62

2.3.3 Expressions

Allow arithmetic expressions formed
Using the operators +, -, ×, /.
Division is usually defined to produce an integer result.

Expression may be constants, user-defined symbols, or
special terms.

106 1036 BUFEND EQU *

Gives BUFEND a value that is the address of the next
byte after the buffer area.

Absolute expressions or relative expressions
A relative term or expression represents some value
(S+r), S: starting address, r: the relative value.

63

2.3.3 Expressions

107 1000 MAXLEN EQU BUFEND-BUFFER

Both BUFEND and BUFFER are relative terms.

The expression represents absolute value: the difference
between the two addresses.

Loc =1000 (Hex)

The value that is associated with the symbol that
appears in the source statement.

BUFEND+BUFFER, 100-BUFFER, 3*BUFFER represent
neither absolute values nor locations.

Symbol tables entries

64

2.3.4 Program Blocks

The source program logically contained main,
subroutines, data areas.

In a single block of object code.

More flexible (Different blocks)
Generate machine instructions (codes) and data in a
different order from the corresponding source statements.

Program blocks
Refer to segments of code that are rearranged within a
single object program unit.

Control sections
Refer to segments of code that are translated into
independent object program units.

65

2.3.4 Program Blocks

Three blocks, Figure 2.11
Default (USE), CDATA (USE CDATA), CBLKS (USE CBLKS).

Assembler directive USE
Indicates which portions of the source program blocks.

At the beginning of the program, statements are
assumed to be part of the default block.

Lines 92, 103, 123, 183, 208, 252.

Each program block may contain several separate
segments.

The assembler will rearrange these segments to gather
together the pieces of each block.

66

Main

67

RDREC

68

WRREC

69

2.3.4 Program Blocks

Pass 1, Figure 2.12
The block number is started form 0.

A separate location counter for each program block.

The location counter for a block is initialized to 0 when
the block is first begun.

Assign each block a starting address in the object
program (location 0).

Labels, block name or block number, relative addr.

Working table is generated
Block name Block number Address End Length
default 0 0000 0065 0066 (0~0065)
CDATA 1 0066 0070 000B (0~000A)
CBLKS 2 0071 1070 1000 (0~0FFF)

70

71

72

73

2.3.4 Program Blocks

Pass 2, Figure 2.12
The assembler needs the address for each symbol
relative to the start of the object program.

Loc shows the relative address and block number.

Notice that the value of the symbol MAXLEN (line 70) is
shown without a block number.

20 0006 0 LDA LENGTH 032060

0003(CDATA) +0066 =0069 =TA

using program-counter relative addressing

TA - (PC) =0069-0009 =0060 =disp

74

2.3.4 Program Blocks

Separation of the program into blocks.
Because the large buffer (CBLKS) is moved to the end of
the object program.
No longer need extended format, base register, simply a
LTORG statement.
No need Modification records.
Improve program readability.

Figure 2.13
Reflect the starting address of the block as well as the
relative location of the code within the block.

Figure 2.14
Loader simply loads the object code from each record at
the dictated.
CDATA(1) & CBLKS(1) are not actually present in OP.

75

2.3.4 Program Blocks

Default 1

Default 2

Default 3
CDATA 2

CDATA 3

76

77

2.3.5 Control Sections & Program Linking

Control section
Handling of programs that consist of multiple control
sections.

Each control section is a part of the program.

Can be assembled, loaded and relocated independently.

Different control sections are most often used for
subroutines or other logical subdivisions of a program.

The programmer can assemble, load, and manipulate
each of these control sections separately.

More Flexibility then the previous.

Linking control sections together.

78

2.3.5 Control Sections & Program Linking

External references (external symbol references)
Instructions in one control section might need to refer to
instructions or data located in another section.

Figure 2.15, multiple control sections.
Three sections, main COPY, RDREC, WRREC.

Assembler directive CSECT.

Assembler directives EXTDEF and EXTREF for external
symbols.

The order of symbols is not significant.
COPY START 0

EXTDEF BUFFER, BUFEND, LENGTH
EXTREF RDREC, WRREC (symbol name)

79

80

81

82

2.3.5 Control Sections & Program Linking

Figure 2.16, the generated object code.
15 0003 CLOOP +JSUB RDREC 4B100000
160 0017 +STCH BUFFER,X 57900000

The LOC of all control section is started form 0

RDREC is an external reference.

The assembler has no idea where the control section
containing RDREC will be loaded, so it cannot assemble
the address.

The proper address to be inserted at load time.

Must use extended format instruction for external
reference (M records are needed).

190 0028 MAXLEN WORD BUFEND-BUFFER

An expression involving two external references.

83

84

85

86

2.3.5 Control Sections & Program Linking

The loader will add to this data area with the address of
BUFEND and subtract from it the address of BUFFER.
(COPY and RDREC for MAXLEN)

Line 190 and 107, in 107, the symbols BUFEND and
BUFFER are defined in the same section.

The assembler must remember in which control section
a symbol is defined.

The assembler allows the same symbol to be used in
different control sections, lines 107 and 190.

Figure 2.17, two new records.
Defined record for EXTDEF, relative address.

Refer record for EXTREF.

87

88

2.3.5 Control Sections & Program Linking

Modification record
M

Starting address of the field to be modified, relative to
the beginning of the control section (Hex).

Length of the field to be modified, in half-bytes.

Modification flag (+ or -).

External symbol.
M^000004^05+RDREC
M^000028^06+BUFEND
M^000028^06-BUFFER

Use Figure 2.8 for program relocation.

89

90

91

2.4 Assembler Design Options
2.4.1 Two-Pass Assembler

Most assemblers
Processing the source program into two passes.

The internal tables and subroutines that are used only
during Pass 1.

The SYMTAB, LITTAB, and OPTAB are used by both
passes.

The main problems to assemble a program in one
pass involves forward references.

92

2.4.2 One-Pass Assemblers

Eliminate forward references
Data items are defined before they are referenced.

But, forward references to labels on instructions cannot
be eliminated as easily.

Prohibit forward references to labels.

Two types of one-pass assembler. (Fig. 2.18)
One type produces object code directly in memory for
immediate execution.

The other type produces the usual kind of object
program for later execution.

93

94

95

96

2.4.2 One-Pass Assemblers

Load-and-go one-pass assembler
The assembler avoids the overhead of writing the object
program out and reading it back in.

The object program is produced in memory, the
handling of forward references becomes less difficult.

Figure 2.19(a), shows the SYMTAB after scanning line
40 of the program in Figure 2.18.

Since RDREC was not yet defined, the instruction was
assembled with no value assigned as the operand
address (denote by - - - -).

97

98

99

2.4.2 One-Pass Assemblers

Load-and-go one-pass assembler
RDREC was then entered into SYMTAB as an undefined
symbol, the address of the operand field of the
instruction (2013) was inserted.

Figure 2.19(b), when the symbol ENDFIL was defined
(line 45), the assembler placed its value in the SYMTAB
entry; it then inserted this value into the instruction
operand field (201C).

At the end of the program, all symbols must be defined
without any * in SYMTAB.

For a load-and-go assembler, the actual address must
be known at assembly time.

100

2.4.2 One-Pass Assemblers

Another one-pass assembler by generating OP
Generate another Text record with correct operand address.

When the program is loaded, this address will be inserted
into the instruction by the action of the loader.

Figure 2.20, the operand addresses for the instructions on
lines 15, 30, and 35 have been generated as 0000.

When the definition of ENDFIL is encountered on line 45,
the third Text record is generated, the value 2024 is to be
loaded at location 201C.

The loader completes forward references.

101

ENDFIL

RDREC

EXIT

WRREC

102

2.4.2 One-Pass Assemblers

In this section, simple one-pass assemblers
handled absolute programs (SIC example).

103

2.4.3 Multi-Pass Assemblers
Use EQU, any symbol used on the RHS be defined previously
in the source.
LOC Pass1 2 3
1000 LDA #0 1000 1000 1000
1003 ALPHA EQU BETA ???? ???? 1003
1003 BETA EQU DELTA ???? 1003 1003
1003 DELTA RESW 1 1003 1003 1003

Need 3 passes!

Figure 2.21, multi-pass assembler

104

2.4.3 Multi-Pass Assemblers

105

2.4.3 Multi-Pass Assemblers

106

2.4.3 Multi-Pass Assemblers

107

2.4.3 Multi-Pass Assemblers

108

2.4.3 Multi-Pass Assemblers

	Chapter 2�Assemblers�http://www.intel.com/multi-core/demos.htm
	Outline
	2.1 Basic Assembler Functions
	2.1 Basic Assembler Functions
	2.1 Basic Assembler Functions
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.1 A simple SIC Assembler
	2.1.2 Assembler Tables and Logic
	2.1.2 Assembler Tables and Logic
	2.1.2 Assembler Tables and Logic
	2.1.2 Assembler Tables and Logic
	Pass 1
	Pass 2
	2.2 Machine-Dependent Assembler Features
	Figure 2.5: First
	Figure 2.5: RDREC
	Figure 2.5: WRREC
	2.2 Machine-Dependent Assembler�Features
	2.2 Machine-Dependent Assembler�Features
	2.2.1 Instruction Formats & Addressing Modes
	2.2.1 Instruction Formats & Addressing Modes
	2.2.2 Program Relocation
	2.2.2 Program Relocation
	2.2.2 Program Relocation
	2.3 Machine-Independent Assembler Features
	RDREC
	WRREC
	2.3.1 Literals
	RDREC
	WRREC
	2.3.1 Literals
	2.3.1 Literals
	2.3.1 Literals
	2.3.2 Symbol-Defining Statements
	2.3.2 Symbol-Defining Statements
	2.3.2 Symbol-Defining Statements
	2.3.2 Symbol-Defining Statements
	2.3.2 Symbol-Defining Statements
	2.3.2 Symbol-Defining Statements
	2.3.2 Symbol-Defining Statements
	2.3.3 Expressions
	2.3.3 Expressions
	2.3.4 Program Blocks
	2.3.4 Program Blocks
	Main
	RDREC
	WRREC
	2.3.4 Program Blocks
	2.3.4 Program Blocks
	2.3.4 Program Blocks
	2.3.4 Program Blocks
	2.3.5 Control Sections & Program Linking
	2.3.5 Control Sections & Program Linking
	2.3.5 Control Sections & Program Linking
	2.3.5 Control Sections & Program Linking
	2.3.5 Control Sections & Program Linking
	2.4 Assembler Design Options�2.4.1 Two-Pass Assembler
	2.4.2 One-Pass Assemblers
	2.4.2 One-Pass Assemblers
	2.4.2 One-Pass Assemblers
	2.4.2 One-Pass Assemblers
	2.4.2 One-Pass Assemblers
	2.4.3 Multi-Pass Assemblers
	2.4.3 Multi-Pass Assemblers
	2.4.3 Multi-Pass Assemblers
	2.4.3 Multi-Pass Assemblers
	2.4.3 Multi-Pass Assemblers
	2.4.3 Multi-Pass Assemblers

