
1

Chapter 4
Macro Processors

Source
Code

(with macro)

Macro
Processor

Expanded
Code

Compiler or
Assembler

obj

2

4.1 Basic Macro Processor Functions
4.1.1 Macro Definition and Expansion

Fig. 4.1 shows an example of a SIC/XE program
using macro instructions.

RDBUFF and WRBUFF

MACRO and MEND

RDBUFF is name

Parameters (參數) of the macro instruction, each
parameter begins with the character &.

Macro invocation (引用) statement and the arguments
(引數) to be used in expanding the macro.

Fig. 4.2 shows the output that would be generated.

3

4

5

6

7

8

9

Source
STRG MACRO

STA DATA1
STB DATA2
STX DATA3
MEND

.
STRG

.
STRG

.

.

Expanded source

.

.

.

.STRG
STA DATA1
STB DATA2
STX DATA3

.STRG
STA DATA1
STB DATA2
STX DATA3

.

{
{

10

4.1.2 Macro Processor Algorithm
and Data Structures

Two-pass macro processor
All macro definitions are processed during the first pass.

All macro invocation statements are expanded during
the second pass.

Two-pass macro processor would not allow the body of
one macro instruction to contain definitions of other
macros.

Such definitions of macros by other macros Fig.
4.3

11

12

13

4.1.2 Macro Processor Algorithm
and Data Structures

A one-pass macro processor that can alternate
between macro definition and macro expansion.

The definition of a macro must appear in the source
program before any statements that invoke that
macro.

Inconvenience of the programmer.

Macro definitions are stored in DEFTAB

Comment lines are not entered the DEFTAB.

14

4.1.2 Macro Processor Algorithm
and Data Structures

The macro names are entered into NAMTAB, NAMTAB
contains two pointers to the beginning and the end of
the definition in DEFTAB

The third data structure is an argument table ARGTAB,
which is used during the expansion of macro invocations.

The arguments are stored in ARGTAB according to their
position in the argument list.

15

4.1.2 Macro Processor Algorithm
and Data Structures

Fig. 4.4 shows positions of the contents of these
tables during the processing.

Parameter &INDEV -> Argument ?1

Parameter &BUFADR -> Argument ?2

When the ?n notation is recognized in a line form
DEFTAB, a simple indexing operation supplies the
proper argument form ARGTAB.

16

17

4.1.2 Macro Processor Algorithm
and Data Structures

The macro processor algorithm itself is presented
in Fig. 4.5.

The procedure PROCESSING

The procedure DEFINE
Called when the beginning of a macro definition is recognized,
makes the appropriate entries in DEFTAB and NAMTAB.

The procedure EXPAND
Called to set up the argument values in ARGTAB and expand a
macro invocation statement.

The procedure GETLINE
Called at several points in the algorithm, gets the next line to be
processed.

EXPANDING is set to TRUE or FALSE.

18

19

20

21

4.1.2 Macro Processor Algorithm
and Data Structures

To solve the problem is Fig. 4.3, our DEFINE
procedure maintains a counter named LEVEL.

MACRO directive is read, the value of LEVEL is inc. by 1.

MEND directive is read, the value of LEVEL is dec. by 1.

22

4.2 Machine-Independent Macro Processor
Features
4.2.1 Concatenation of Macro Parameters

Most macro processors allow parameters to be
concatenated with other character strings.

A program contains one series of variables named by
the symbols XA1, XA2, XA3, …, another series named
by XB1, XB2, XB3, …, etc.

The body of the macro definition might contain a
statement like

SUM Macro &ID

LDA X&ID1

LDA X&ID2

LDA X&ID3

LDA X&IDS

23

4.2.1 Concatenation of Macro Parameters

The beginning of the macro parameter is identified by
the starting symbol &; however, the end of the
parameter is not marked.

The problem is that the end of the parameter is not
marked. Thus X&ID1 may mean “X” + ID + “1” or “X” +
ID1.

In which the parameter &ID is concatenated after the
character string X and before the character string 1.

24

4.2.1 Concatenation of Macro Parameters

Most macro processors deal with this problem by
providing a special concatenation operator (Fig. 4.6).

In SIC or SIC/XE, -> is used

25

4.2.2 Generation of Unique Labels

As we discussed in Section 4.1, it is in general not
possible for the body of a macro instruction to
contain labels of usual kind.

WRBUFF (line 135) is called twice.

Fig. 4.7 illustrates one techniques for generating unique
labels within a macro expansion.

Labels used within the macro body begin with the
special character $.

Each symbol beginning with $ has been modified by
replacing $ with $AA.

26

4.2.2 Generation of Unique Labels

27

4.2.2 Generation of Unique Labels

28

29

4.2.3 Conditional Macro Expansion

The use of one type of conditional macro
expansion statement is illustrated in Fig. 4.8.

The definition of RDBUFF has two additional
parameters: &EOR and &MAXLTH.

Macro processor directive SET

This SET statement assigns the value 1 to &EORCK.

The symbol &EORCK is a macro time variables, which
can be used to store working values during the macro
expansion.
RDBUFF F3,BUF,RECL,04,2048
RDBUFF 0E,BUFFER,LENGTH,,80
RDBUFF F1,BUFF,RLENG,04

30

1

2

3

4

31

2

3

4

32

3

33

2

3

4

34

4.2.3 Conditional Macro Expansion

A different type of conditional macro expansion
statement is illustrated in Fig. 4.9.

There is a list (00, 03, 04) corresponding to &EOR.

%NITEMS is a macro processor function that returns as
its value the number of members in an argument list.

%NITEMS(&EOR) is equal to 3.

&CTR is used to count the number of times the lines
following the WHILE statement have been generated.

Thus on the first iteration the expression &EOR[&CTR]
on line 65 has the value 00 = &EOR[1]; on the second
iteration it has the value 03, and so on.

How to implement nesting WHILE structures?

35

36

37

4.2.4 Keyword Macro Parameters

Positional parameters
Parameters and arguments were associated with each
other according to their positions in the macro
prototype and the macro invocation statements.

A certain macro instruction GENER has 10 possible
parameters.

GENER MACRO &1, &2, &type, …, &channel, &10

GENER , , DIRECT, , , , , , 3

38

4.2.4 Keyword Macro Parameters

Keyword parameters
Each argument value is written with a keyword that
names the corresponding parameter.

Arguments may appear in any order.

GENER , , DIRECT, , , , , , 3
GENER TYPE=DIRECT, CHANNEL=3
GENER CHANNEL=3, TYPE=DIRECT

parameter=argument

Fig. 4.10 shows a version of the RDBUFF using keyword.

39

2

3

40

2

3

41

42

4.3 Macro Processor Design Options
4.3.1 Recursive Macro Expansion

In Fig. 4.3 we presented an example of the
definition of one macro instruction by another.

Fig. 4.11(a) shows an example - Dealt with the
invocation of one macro by another.

The purpose of RDCHAR Fig. 4.11(b) is to read one
character from a specified device into register A,
taking care of the necessary test-and-wait loop.

43

44

45

4.3.1 Recursive Macro Expansion

Fig. 4.11(c), applied to the macro invocation statement
RDBUFF BUFFER, LENGTH, F1

The procedure EXPAND would be called when the macro
was recognized.

The arguments from the macro invocation would be
entered into ARGTAB as follows:

46

4.3.1 Recursive Macro Expansion

The Boolean variable EXPANDING would be set to TRUE,
and expansion of the macro invocation statement would be
begin.

The processing would proceed normally until line 50, which
contains a statement invoking RDCHAR. At that point,
PROCESSLINE would call EXPAND again.

This time, ARGTAB would look like

47

4.3.1 Recursive Macro Expansion

At the end of this expansion, however, a problem
would appear. When the end of the definition of
RDCHAR was recognized, EXPANDING would be
set to FALSE.

Thus the macro processor would “forget” that it
had been in middle of expanding a macro when it
encountered the RDCHAR statement.

Use a Stack to save ARGTAB.

Use a counter to identify the expansion.

48

Pages 208-209, MASM

49

50

51

	Chapter 4�Macro Processors
	4.1 Basic Macro Processor Functions�4.1.1 Macro Definition and Expansion
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.2 Machine-Independent Macro Processor Features� 4.2.1 Concatenation of Macro Parameters
	4.2.1 Concatenation of Macro Parameters
	4.2.1 Concatenation of Macro Parameters
	4.2.2 Generation of Unique Labels
	4.2.2 Generation of Unique Labels
	4.2.2 Generation of Unique Labels
	4.2.3 Conditional Macro Expansion
	4.2.3 Conditional Macro Expansion
	4.2.4 Keyword Macro Parameters
	4.2.4 Keyword Macro Parameters
	4.3 Macro Processor Design Options�4.3.1 Recursive Macro Expansion
	4.3.1 Recursive Macro Expansion
	4.3.1 Recursive Macro Expansion
	4.3.1 Recursive Macro Expansion
	Pages 208-209, MASM

