Chapter 4

Macro Processors

Source
Code

(with macro)

Macro
Processor

.| Expanded

Code

_/—

| Compiler or

Assembler

— 0Dbj

4.1 Basic Macro Processor Functions
4.1.1 Macro Definition and Expansion

Fig. 4.1 shows an example of a SIC/XE program
using macro instructions.

o RDBUFF and WRBUFF

o MACRO and MEND

o RDBUFF is name

o Parameters (ZE}v) of the macro instruction, each
parameter begins with the character &.

o Macro invocation (J [*'|) statement and the arguments
(5 [Ep) to be used in expanding the macro.

Fig. 4.2 shows the output that would be generated.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

COPY
RDBUEFF

START
MACRO

0

COPY FILE FROM INPUT TO OUTPUT

&INDEV, &§BUFADR, &RECLTH

MACRO TO READ RECORD INTO BUFFER

CLEAR
CLEAR

X

A

S

#4096

=X’ &INDEV'

&RECLTH

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175

WRBUFF

MACRO

&OUTDEV, &BUFADR, &RECLTH

MACRO TO WRITE RECORD FROM BUFFER

CLEAR

X

&RECLTH
&BUFADR, X
=X'&OUTDEV’

PROGRAM

CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST QOUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALI. CHARACTERS
HAVE BEEN WRITTEN

180
190
195
200
205
210
215
220
225
230
235
240
245
250
255

FIRST
CLOOP

ENDFTI,

EOF
THREE
RETADR
LENGTH
BUFFER

Figure 4.1

STL
RDBUFF
LDA
COMP
JEQ
WRBUFT
g
WRBUFF
J

BYTE
WORD
RESW
RESW
RESB
END

RETADR SAVE RETURN ADDRESS
F1,BUFFER, LENGTH READ RECORD INTO BUFFER

LENGTH TEST FOR END OF FILE
#0

ENDFTIL, EXIT IF EOF FOUND

05, BUFFER, LENGTH WRITE OUTPUT RECORD
CLOOP LOOP

05, EOF, THREE INSERT EOF MARKER
@RETADR

C’"EOQF'’

3

1

1 LENGTH OF RECORD

4096 4096-BYTE BUFFER AREA
FIRST

Use of macros in a SIC/XE program.

5
180
190
190a
190b
190c¢
190d
190e
190t
190g
190h
1901
1907
190k
1901
190m
195
200
205

COPY START 0

FIRST STL RETADR
i .CLOOP RDBUFF F1,BUFFER, LENGTH :
: CLOOP CLEAR X :
: CLEAR A :
: CLEAR 8 :
: +LDT #4096 §
E D =X'F1" :
JEQ *3
: RD =X 'F1’ :
: COMPR A,S :
: JEQ 411 :
: STCH BUFFER, X :
: TIXR T :
: JLT *-19 :

LDA LENGTH

COMP #0

JEQ ENDFIL

COPY FILE FROM INPUT TO OUTPUT

SAVE RETURN ADDRESS
READ RECORD INTO BUFFER
CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

TEST FOR END OF FILE

EXIT IF EOF FOUND

210

210a
210b
210c
210d
210e
210f
210g
210h
215

; CLEAR X

: DT LENGTH

: LDCH BUFFER, X

: D =X 05"

: JEQ *-3

: WD =X'05"

: TIXR T

S— 2 ot SO
J CLOOP

: WRITE OUTPUT RECORD
: CLEAR LOOP COUNTER

E GET CHARACTER FROM BUFFER
: TEST OUTPUT DEVICE

: LOOP UNTIL READY

: WRITE CHARACTER

: LOOP UNTIL ALL CHARACTERS

HAVE BEEN WRITTEN
LOCP

220
220a
220b
220c¢
220d
220e
220f
2209
220h
225
230
235
240
245
250
255

TIXR

EOF BYTE
THREE WORD
RETADR RESW
LENGTH RESW
BUFFER RESB
END

05, EQF, THREE
X

THREE

EQF, X
=X'05"

*-3
=X'05"

4096
FIRST

INSERT EOF MARKER
CLEAR LOOP COUNTER

GET CHARACTER FROM BUFFER

TEST OUTPUT DEVICE

LOOP UNTIL READY

WRITE CHARACTER

LOOP UNTIL ALL CHARACTERS
HAVE BEEN WRITTEN

LENGTH OF RECORD
4096-BYTE BUFFER AREA

Figure 4.2 Program from Fig. 4.1 with macros expanded.

Source

STRG MACRO
STA DATAL
STB DATAZ2
STX DATAS3
MEND

STRG

STRG

Expanded source

STRG
STA
STB
STX

STA
STB
STX

DATA1
DATAZ2
DATA3

DATAL
DATAZ2
DATA3

4.1.2 Macro Processor Algorithm
and Data Structures

Two-pass macro processor
o All macro definitions are processed during the first pass.

o All macro invocation statements are expanded during
the second pass.

o Two-pass macro processor would not allow the body of
one macro instruction to contain definitions of other
macros.

Such definitions of macros by other macros Fig.
4.3

10

1
2

)

MACROS
RDBUFF

WRBUF'F

MACRO
MACRO

MACRO

{Defines SIC standard version macros}
&INDEV, &§BUFADR, &RECLTH

{SIC standard version}

{End of RDBUFF}
&OUTDEV, &BUFADR, &RECLTH

{SIC standard version}

{End of WRBUFF}

{End of MACROS}

11

1 MACROX MACRO {Defines SIC/XE macros}
2 RDBUFF MACRO &INDEV, &§BUFADR, &§RECLTH

{SIC/XE version}?

1

{End of RDBUFF}

4 WRBUFF MACRO &OUTDEV, &§BUFADR, &RECLTH
{SIC/XE version}

5 MEND {End of WRBUFF}

6 MEND {End of MACROX}

(b)

Figure 4.3 Example of the definition of macros within a macro body.
12

4.1.2 Macro Processor Algorithm
and Data Structures

A one-pass macro processor that can alternate

between macro definition and macro expansion.

a The definition of a macro must appear in the source
program before any statements that invoke that
macro.

o Inconvenience of the programmer.
o Macro definitions are stored in DEFTAB
o Comment lines are not entered the DEFTAB.

13

4.1.2 Macro Processor Algorithm
and Data Structures

o The macro names are entered into NAMTAB, NAMTAB
contains two pointers to the beginning and the end of
the definition in DEFTAB

o The third data structure is an argument table ARGTAB,
which is used during the expansion of macro invocations.

o The arguments are stored in ARGTAB according to their
position in the argument list.

14

4.1.2 Macro Processor Algorithm
and Data Structures

Fig. 4.4 shows positions of the contents of these
tables during the processing.

o Parameter &INDEV -> Argument ?1

o Parameter &BUFADR -> Argument ?2

2 When the ?n notation is recognized in a line form
DEFTAB, a simple indexing operation supplies the
proper argument form ARGTAB.

15

NAMTAB DEFTAB

. .
: .
: .
: .
. ——’——“—___,,_.- RDBUFF &INDEV, &BUFADR, &RECLTH
RDBUFF | T o CLEAR X
CLEAR A
. CLEAR S
. +LDT #4096
TD =X'?1’
JEQ *—3
ARGTAB ® e
COMPR A.S
JEQ *4]1
STCH ?2,X
TIXR T
JLT *-19
STX ?3
—»| uENnD
.
.

(a)

4.1.2 Macro Processor Algorithm

and Data Structures
The macro processor algorithm itself is presented

in Fig. 4.5.
o The procedure PROCESSING
o The procedure DEFINE

Called when the beginning of a macro definition is recognized,
makes the appropriate entries in DEFTAB and NAMTAB.

o The procedure EXPAND

Called to set up the argument values in ARGTAB and expand a
macro invocation statement.

o The procedure GETLINE

Called at several points in the algorithm, gets the next line to be

processed.

o EXPANDING is set to TRUE or FALSE.

17

begin {macro processor}
EXPANDING := FALSE
while OPCODE # 'END’ do
begin
GETLINE
PROCESSLINE
end {while}
end {macro processor}

procedure PROCESSLINE
begin
search NAMTAB for OPCODE
if found then
EXPAND
else if OPCODE = 'MACRO’ then
DEFINE
else write source line to expanded file
end {PROCESSLINE}

Figure 4.5 Algorithm-for-a-one-pass-macro processor.

18

procedure DEFINE
begin
enter macro name into NAMTAB
enter macro prototype into DEFTAB
LEVEL :=1
while LEVEL > 0 do
begin
GETLINE
if this is not a comment line then
begin
substitute positional notation for parameters
enter line into DEFTAB
if OPCODE = 'MACRO’ then
LEVEL := LEVEL + 1
else if OPCODE = 'MEND’ then
LEVEL := LEVEL - 1
end {if not comment}
end {while}
store in NAMTAB pointers to beginning and end of definition

end {DEFINE}
19

procedure EXPAND
begin
EXPANDING := TRUE
get first line of macro definition {prototype} from DEFTAB

set up arguments from macro invocation in ARGTAB
write macro invocation to expanded file as a comment
while not end of macro definition do
begin
GETLINE
PROCESSLINE
end {while}
EXPANDING := FALSE
end {EXPAND}

procedure GETLINE

begin
if EXPANDING then
begin
get next line of macro definition from DEFTAB
substitute arguments from ARGTAB for positional notation
end {if}
else

read next line from input file
end {GETLINE}

Figure 4.5 (contd) 20

4.1.2 Macro Processor Algorithm
and Data Structures

To solve the problem is Fig. 4.3, our DEFINE
procedure maintains a counter named LEVEL.

o MACRO directive is read, the value of LEVEL is inc. by 1.
o MEND directive is read, the value of LEVEL is dec. by 1.

21

4.2 Machine-Independent Macro Processor

Features
4.2.1 Concatenation of Macro Parameters

Most macro processors allow parameters to be
concatenated with other character strings.

o A program contains one series of variables named by
the symbols XA1, XA2, XA3, ..., another series nhamed
by XB1, XB2, XB3, ..., etc.

o The body of the macro definition might contain a
statement like
SUM Macro &ID

LDA X&ID1
LDA X&ID2
LDA X&ID3

LDA X&IDS

22

4.2.1 Concatenation of Macro Parameters

o The beginning of the macro parameter is identified by
the starting symbol &; however, the end of the
parameter is not marked.

o The problem is that the end of the parameter is not
marked_ Thus X&ID:L may mean uX” + ID + “1” or “X” +
ID1.

o In which the parameter &ID is concatenated after the
character string X and before the character string 1.

23

4.2.1 Concatenation of Macro Parameters

Most macro processors deal with this problem by
providing a special concatenation operator (Fig. 4.6).

a In SIC or SIC/XE, -> is used

1 SUM MACRO &ID

2 LDA X&ID—1
3 ADD X&ID—>2
4 ADD X&ID—3
5 STA X&ID—S
6 MEND

(a)

24

4.2.2 Generation of Unique Labels

As we discussed in Section 4.1, it is in general not
possible for the body of a macro instruction to
contain labels of usual Kind.

Q

Q

WRBUFF (line 135) is called twice.

Fig. 4.7 illustrates one techniques for generating unique
labels within a macro expansion.

Labels used within the macro body begin with the
special character $.

Each symbol beginning with $ has been modified by
replacing $ with $AA.

25

4.2.2 Generation of Unique Labels

Because it was not possible to place a label on line 135 of this macro defini-
tion, the Jump instructions on lines 140 and 155 were written using the relative
operands *-3 and *-14. This sort of relative addressing in a source statement
may be acceptable for short jumps such as “JEQ *-3.” However, for longer
jumps spanning several instructions, such notation is very inconvenient, error-
prone, and difficult to read. Many macro processors avoid these problems by
allowing the creation of special types of labels within macro instructions.

26

25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

4.2.2 Generation of Unique Labels

RDBUFF

SLOOP

SEXIT

MACRO
CLEAR
CLEAR
CLEAR
+LDT
TD
JEQ
RD
COMPR
JEQ
STCH
TIXR
JLT
STX

&INDEV, &BUFADR, &RECLTH

X

A

S

#4096
=X'&INDEV'
SLOOP
=X'&INDEV’
A,S
SEXIT
&BUFADR, X
T

$SLOOP
&RECLTH

(a)

CLEAR LOOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

27

30
35
40
45
50
55
60
65
70
75
80
85
90

RDBUFF

CLEAR
CLEAR
CLEAR
+L.DT
SAALOOP TD
JEQ

COMPR
JEQ
STCH
TIXR

SAAEXIT STX

F1l,BUFFER, LENGTH

X

A

S
#4096
=X'F1'
SAALOOP
=X'F1'
A,S
SAAEXIT
BUFFER, X
T
SAATQOOP
LENGTH

(b)

CLEAR LOOP COUNTER

SET MAXTIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Figure 4.7 Generation of unique labels within macro expansion.

28

4.2.3 Conditional Macro Expansion

The use of one type of conditional macro
expansion statement is illustrated in Fig. 4.8.

o The definition of RDBUFF has two additional
parameters: &EOR and &MAXLTH.

o Macro processor directive SET
o This SET statement assigns the value 1 to &EORCK.

o The symbol &EORCK is a macro time variables, which
can be used to store working values during the macro

expansion.
o RDBUFF F3,BUF,RECL,04,2048
o RDBUFF OE,BUFFER,LENGTH, ,80

o RDBUFF F1,BUFF,RLENG, 04

25 RDBUFF. . MACRO . &INDEV,&BUFADR, &§RECLTH, &EOR, &MAXLTH

26 : IF (§&EOR NE ')

27 i1 sEORCK SET 1 :

28 - B

30 O TTTTTTTTCLEAR X CLEAR LOOP COUNTER

K N o1 1 Y2 S - N

38 : TF (&EORCK EQ 1) :

40 i LDCH =X'&EOR’ SET EOR CHARACTER

42 : RMO A,S :

43 |E'l‘:

44 : IF (&MAXLTH EQ ' ') :

45 : +LDT #4096 SET MAX LENGTH = 4096

46 + 3 ELSE :

47 i +LDT #GMAXLTH SET MAXIMUM RECORD LENGTH
S -1 | B -

50 4T,00P D =X’ & INDEV ' TEST INPUT DEVICE

55 JEQ $LOOP LOOP UNTIL READY

60 RD =X’ & INDEV’ READ CHARACTER INTO REG A
gy pmeee s D

65 - 4 COMPR A,S TEST FOR END OF RECORD

70 - JEQ SEXIT E?IT LOOP IF EOR

73 - :

75 T gren &BUFADR, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT $LOOP HAS BEEN REACHED

90 SEXTIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

(@) 30

30
35
40
42
47
50
5h
60
65
70
75
80
85
90

RDBUFFE
CLEAR X
CLEAR A
e ¢ DCH 1';&7'621'?
IIIIIIIIIIIIIIiﬁﬂ&‘lIIIIIII#éblaIéIIIIIIIII
SR A
JEQ SAAT.O0P
RD =X'F3°
prsssssnnes B T R
Tl JEQ. . SAREXTT
STCH BUF, X
TIXR T
JLT $AALOOP
SAAEXIT STX RECL,

(b)

F3,BUF,RECL, 04,2048

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXTT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

Figure 4.8 Use of macro-time conditional statements.

31

30
35
47
50
55
60
75
80
87
90

RDBUFF

OE, BUFFER, LENGTH, , 80

SABLOOQOP

SABEXIT

BUFFER, X
T
SABLOOP
LENGTH

(c)

CLEAR LOCOP COUNTER

SET MAXIMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

32

30
35
40
42
45
50
55
60
65
70
75
80
85
90

RDBUFF

F1l,BUFF, RLENG, 04

SACEXIT

STX

SACLOOP
RLENG

(d)

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAX LENGTH = 4096

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

33

4.2.3 Conditional Macro Expansion

A different type of conditional macro expansion
statement is illustrated in Fig. 4.9.
a There is a list (00, 03, 04) corresponding to &EOR.

o %NITEMS is a macro processor function that returns as
its value the number of members in an argument list.

o0 %NITEMS(&EOR) is equal to 3.

0 &CTR is used to count the number of times the lines
following the WHILE statement have been generated.

a Thus on the first iteration the expression &EOR[&CTR]
on line 65 has the value 00 = &EOR[1]; on the second
iteration it has the value 03, and so on.

o How to implement nesting WHILE structures?

34

CLEAR LOOP COUNTER

SET MAX LENGTH = 4096
TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

25 _ RDBUFF MACRO &INDEV, &BUFADR, &RECLTH, &EOR
27 ; &EORCT SET tNITEMS (&EOR)
27 I St
35 CLEAR A

45 +LDT $4096

50 $LOOP D =X ' & INDEV’

55 JEQ $LOOP

] R 4D =X &INDEV] LB
63 :“‘““““"““““‘““““"“““““““““““““‘ .
64 WHILE (&CTR LE &EOR(‘:‘%‘)""
65 : COMP =X’0000&EOR[&CTR] '
70 : JEQ SEXIT
s riv: D e
o Tl
T R i T —
80 TIXR T

85 JLT $LOOP

90 SEXIT STX &RECLTH

100 MEND

(a)

35

RDBUFF F2,BUFFER, LENGTH, (00,03,04)

30 CLEAR X CLEAR LOOP COUNTER
35 CLEAR A

45 +LDT #4096 SET MAX LENGTH = 4096

50 SAAT.OOP TD =X'F2’ TEST INPUT DEVICE

55 JEQ SAAT.OOP LOOP UNTIL READY

60 RD =X'F2’ READ CHARACTER INTO REG A
e S IR OO

70 JEQ SAAEXIT

65 : COMP =X'000003"

70 JEQ SAAEXIT

65 COMP =X’000004’ :

70 e TR SAREXIT e

75 STCH BUFFER, X STORE CHARACTER IN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SAALOOP HAS BEEN REACHED

90 SAAEXIT STX LENGTH SAVE RECORD LENGTH

(b)

36

4.2.4 Keyword Macro Parameters

Positional parameters

o Parameters and arguments were associated with each
other according to their positions in the macro
prototype and the macro invocation statements.

a A certain macro instruction GENER has 10 possible
parameters.

GENER MACR//-/F)G &Ch/a‘rnel/O
GENER , ECT, ,

37

4.2.4 Keyword Macro Parameters

Keyword parameters

o Each argument value is written with a keyword that
names the corresponding parameter.

o Arguments may appear in any order.

GENER , » DIRECT, , , , , , 3
GENER TYPE=DIRECT, CHANNEL=3
GENER CHANNEL=3, TYPE=DIRECT

parameter=argument
o Fig. 4.10 shows a version of the RDBUFF using keyword.

38

25 RDBUFF MACRO &INDEV=F1, &BUFADR=, &RECLTH=, &EOR=04 , &MAXLTH=4096

26 : IF (&EOR NE ') &

27: &EORCK SET 1

2B ENDLE i :

30 CLEAR X CLEAR LOOP COUNTER
33— CLEAR A e,

38 : IF (&EORCK EQ 1) :

40 : ILDCH =X’&EOR’ : SET EOR CHARACTER

427 2 RMO A,S :

43 s D :

47 +LDT #&MAXLTH SET MAXIMUM RECORD LENGTH
50 $LOOP TD =X'&INDEV’ TEST INPUT DEVICE

55 JEQ $LOOP LOOP UNTIL READY

60 RD =X’ &INDEV’ READ CHARACTER INTO REG A
g3 s Prrap (BEORCR 501

65 i 4 COMPR A,S :TEST FOR END OF RECORD

70 JEQ SEXTT “EXIT LOOP IF EOR

73 : ENDIF

Jp e Fry T AL STORE CHARACTER TN BUFFER
80 TIXR T LOOP UNLESS MAXIMUM LENGTH
85 JLT SLOOP HAS BEEN REACHED

90 $EXIT STX &RECLTH SAVE RECORD LENGTH

95 MEND

39

30
35

40 :
42 :

47
50
55
60

65 :
70

75
80
85
90

RDBUFF BUFADR=BUFFER, RECLTH=LENGTH

CLEAR X
..................... CLEAR A ..
r 2 LDCH =X'04°
: RMO e, ArS ot
.................... o (B2

SAALOOP TD -X'F1’

JEQ SAALOOP

RD ... =X EL
TR
P 3 JEQ SAAEXTT
...................... R

TIXR T

JLT SAALOOP

SAAEXIT STX LLENGTH

(b)

Figure 4.10 Use of keyword parameters-in-macro-instructions.

CLEAR LOOP COUNTER

SET EOR CHARACTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

40

30
35
47
50
55
60
75
80
85
90

RDBUFF RECLTH=LENGTH, BUFADR=BUFFER, EOR=, INDEV=F3

CLEAR X

CLEAR A

+L.DT #4096
SABLOOP TD =X'F3'

JEQ SABLOOP

RD =X'F3'

STCH BUFFER, X

TIXR T

JLT SABLOOP
SABEXIT STX LENGTH

(c)

Figure 4.10 (contd)

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

TEST INPUT DEVICE

LOOP UNTIL READY

READ CHARACTER INTO REG A

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXTMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

41

4.3 Macro Processor Design Options
4.3.1 Recursive Macro Expansion

In Fig. 4.3 we presented an example of the
definition of one macro instruction by another.

Fig. 4.11(a) shows an example - Dealt with the
invocation of one macro by another.

The purpose of RDCHAR Fig. 4.11(b) is to read one
character from a specified device into register A,
taking care of the necessary test-and-wait loop.

42

5
10
15
20
25
30
35
40

RDCHAR

MACRO &IN

MACRO TO READ CHARACTER INTO REGISTER A

TD =X"&IN' TEST INPUT DEVICE
JEQ *-3 LOOP UNTIL READY
RD =X'"&IN' READ CHARACTER
MEND

(b)

RDBUFF BUFFER, LENGTH, F1

43

10
15
20
25
30
35
40
45
50
65
70
75
80
85
90
95

RDBUFF

SLOOP

SEXTT

MACRO &BUFADR, &RECLTH, &INDEV

MACRO TO READ RECORD INTO BUFFER

CLEAR X
CLEAR A
CLEAR S
+LDT #4096

RDCHAR &INDEV
COMPR A,S

JEQ SEXIT
STCH &BUFADR, X
TIXR T

JLT SLOOP

STX &RECLTH

MEND

CLEAR LOOP COUNTER

SET MAXTMUM RECORD LENGTH

READ CHARACTER INTO REG A

TEST FOR END OF RECORD

EXIT LOOP IF EOR

STORE CHARACTER IN BUFFER

LOOP UNLESS MAXIMUM LENGTH
HAS BEEN REACHED

SAVE RECORD LENGTH

44

4.3.1 Recursive Macro Expansion

Fig. 4.11(c), applied to the macro invocation statement
RDBUFF BUFFER, LENGTH, F1

The procedure EXPAND would be called when the macro
was recognized.

The arguments from the macro invocation would be
entered into ARGTAB as follows:

Parameter Value
1 BUFFER
2 LENGTH
3 Fl
4 (unused)

4.3.1 Recursive Macro Expansion

The Boolean variable EXPANDING would be set to TRUE,
and expansion of the macro invocation statement would be
begin.

The processing would proceed normally until line 50, which
contains a statement invoking RDCHAR. At that point,
PROCESSLINE would call EXPAND again.

This time, ARGTAB would look like

Parameter Value

1 Fl
2 (unused)

46

4.3.1 Recursive Macro Expansion

At the end of this expansion, however, a problem
would appear. When the end of the definition of
RDCHAR was recognized, EXPANDING would be
set to FALSE.

Thus the macro processor would “forget” that it
had been in middle of expanding a macro when it
encountered the RDCHAR statement.

Use a Stack to save ARGTAB.
Use a counter to identify the expansion.

a7

WO 1O Ui Wi

Pages 208-209, MASM

ABSDIF

EXTIT:

MACRO
LOCAL
IFNB

IFDIF

.ERR
EXTITM
ENDIF
ENDIF
MOV
SUB
JNS
NEG

ENDM

OPl1,0P2,SIZE

EXIT
<SIZE>

<SIZE>, <E>

SIZE&AX, OP1
SIZE&AX, OP2

EXIT
STZE&AX

(a)

)

»; IF SIZE IS NOT BLANK

HH THEN IT MUST BE E
; ERROR -- SIZE MUST BE E OR BLANK

L4

r

I

!

; END OF IFDIF
; END OF IFNB
COMPUTE ABSOLUTE DIFFERENCE

: ; SUBTRACT OP2 FROM OP1l
+; EXIT IF RESULT GE O
i OTHERWISE CHANGE SIGN

48

ABSDIF J, K

MOV AX,J ; COMPUTE ABSOLUTE DIFFERENCE
SUB AX,K

JNS 2?7?0000

NEG AX

220000:
(b)

ABSDIF M,N,E

MOV EAX,M ; COMPUTE ABSOLUTE DIFFERENCE
SUB EAX,N

JNS 2?2?0001

NEG EAX

??0001:

(c) 49

ABSDIF P,Q,X

2

; ERROR -- SIZE MUST BE E OR BLANK
(d)

Figure 4.12 Examples of MASM macro and conditional statements.

50

U= W N

NODE MACRO NAME
IRP S,<'LEFT', 'DATA’, 'RIGHT' >
NAME&S DW 0
ENDM ;; END OF IRP
ENDM ; ; END OF MACRO
(a)
NODE X
XLEFT D 0
XDATA DWW 0
XRIGHT DW 0

(b)

Figure 4.13 Example of MASM-iteration statement. £

	Chapter 4�Macro Processors
	4.1 Basic Macro Processor Functions�4.1.1 Macro Definition and Expansion
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.1.2 Macro Processor Algorithm� and Data Structures
	4.2 Machine-Independent Macro Processor Features� 4.2.1 Concatenation of Macro Parameters
	4.2.1 Concatenation of Macro Parameters
	4.2.1 Concatenation of Macro Parameters
	4.2.2 Generation of Unique Labels
	4.2.2 Generation of Unique Labels
	4.2.2 Generation of Unique Labels
	4.2.3 Conditional Macro Expansion
	4.2.3 Conditional Macro Expansion
	4.2.4 Keyword Macro Parameters
	4.2.4 Keyword Macro Parameters
	4.3 Macro Processor Design Options�4.3.1 Recursive Macro Expansion
	4.3.1 Recursive Macro Expansion
	4.3.1 Recursive Macro Expansion
	4.3.1 Recursive Macro Expansion
	Pages 208-209, MASM

